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Abstract
Solutions for two one-dimensional Schrödinger equations are linked together
using an nth-order Darboux transformation. The resulting coefficients for these
Darboux transformations give rise to a system of n nonlinear partial differential
equations. This system is shown to be equivalent to a matrix Burgers equation
which is linearized using a generalized Hopf–Cole transformation. Solving
this linear system provides the link between solutions of the two Schrödinger
equations and shows how to factor an nth-order Darboux transformation into n
first-order Darboux transformations.

PACS numbers: 02.30.Jr, 03.65.Ge

1. Introduction

One important tool for constructing exact solutions to a differential equation is to link
solutions to the known solutions of another differential equation. Probably the simplest
attempt using a differentiable transform was pioneered by Darboux [6] and is now known as
a Darboux transformation. Using a linear differential operator, he constructed solutions of
one ordinary differential equation in terms of another ordinary differential equation. Crum
[5] further developed this idea by considering iterative applications of first-order Darboux
transformations. He obtained convenient formulae for the Darboux transformations and
their associated solutions. Extensions of Darboux transformation to linear partial differential
equations and linear difference equations emerged in the work of Matveev [11, 12]. The
impact of these transformations is illustrated in Matveev and Salle [10], where a wide variety
of applications can be found. An excellent survey article of the crucial developments of
Darboux transformations can be found in Rosu [13].

Darboux transformations have been applied to the one-dimensional Schrödinger equation.
In a two-part paper, Bagrov and Samsonov [2] and Samsonov and Ovcharov [15] consider
the time-independent Schrödinger equation and using a composition of n first-order Darboux
transformations, determine new classes of solvable Schrödinger equations. These new classes
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of solvable equations have potentials which are related to the harmonic oscillator, Morse
and effective Coulomb potentials. An extension to the time-dependent Schrödinger equation
has also been given by Bagrov et al [3] but requires an additional assumption to determine
the second-order Darboux transformation itself. In the case of linking solutions with the free
particle equation, this assumption was lifted by Arrigo and Hickling [1] in their construction of
the nth-order Darboux transformation. The work of Bagrov et al [3] suggests that an nth-order
Darboux transformation is equivalent to iterating n first-order Darboux transformations. In this
paper we address this question. Here, an nth-order Darboux transformation linking solutions
of two different one-dimensional time-dependent Schrödinger equations is considered. This
results in a system of n nonlinear partial differential equations for the coefficients of the
transformation itself. Rewriting this system of equations in matrix form, and using a matrix
Hopf–Cole transformation, linearizes the system, thus allowing for their solution. This
process also shows how to factor (nonuniquely) an nth-order Darboux transformation into
a composition of nth first-order transformations.

2. Darboux transformations

Consider the one-dimensional Schrödinger equation with a nonzero potential (h̄ = 2m = 1):

i
∂ψ

∂t
= −∂2ψ

∂x2
+ [f (t, x) + g(t, x)]ψ (1)

where f (t, x) and g(t, x) are differentiable functions of their arguments. Introduce the
Darboux transformation:

ψ = ∂nϕ

∂xn
+

n−1∑
k=0

Ak(t, x)
∂kϕ

∂xk
(2)

where the Ak(t, x) are differentiable functions of their arguments. Substituting (2) into (1)
leads to

i
∂n+1ϕ

∂xn∂t
+ i

n−1∑
k=0

(
Ak

∂k+1ϕ

∂xk∂t
+

∂Ak

∂t

∂kϕ

∂xk

)

= −∂n+2ϕ

∂xn+2
−

n−1∑
k=0

(
Ak

∂k+2ϕ

∂xk+2
+ 2

∂Ak

∂x

∂k+1ϕ

∂xk+1
+

∂2Ak

∂x2

∂kϕ

∂xk

)

+ (f + g)

(
∂nϕ

∂xn
+

n−1∑
k=0

Ak

∂kϕ

∂xk

)
. (3)

By requiring that ϕ satisfies the Schrödinger equation

i
∂ϕ

∂t
= −∂2ϕ

∂x2
+ f (t, x)ϕ (4)

and upon rearranging terms in (3), gives

−
(

g − 2
∂An−1

∂x

)
∂nϕ

∂xn
+

n−1∑
k=1

(
i
∂Ak

∂t
+

∂2Ak

∂x2
+ 2

∂Ak−1

∂x
− gAk

)
∂kϕ

∂xk

+
n−1∑
k=1

((
n

k

)
∂n−kf

∂xn−k
+

n−k−1∑
�=1

Ak+�

(
� + k

k

)
∂�f

∂x�

)
∂kϕ

∂xk

×
(

i
∂A0

∂t
+

∂2A0

∂x2
− gA0 +

∂nf

∂xn
+

n−1∑
l=1

A�

∂�f

∂x�

)
ϕ = 0. (5)
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Since the solutions of the Schrödinger equation that appear in equation (5) can be varied
arbitrarily, the coefficients involving ϕ and its higher order derivatives must vanish in order
for (5) to be satisfied. This leads to the following system of partial differential equations for
Ak and g:

i
∂A0

∂t
+

∂2A0

∂x2
− gA0 +

∂nf

∂xn
+

n−1∑
l=1

Ak

∂lf

∂xl
= 0 (6a)

i
∂Ak

∂t
+

∂2Ak

∂x2
+ 2

∂Ak−1

∂x
− gAk +

(
n

k

)
∂n−kf

∂xn−k
+

n−k−1∑
�=1

Ak+�

(
� + k

k

)
∂�f

∂x�
= 0

k = 1, 2, . . . , n − 1 (6b)

g − 2
∂An−1

∂x
= 0. (6c)

Further, eliminating g from (6a) and (6b) using (6c) yields

i
∂A0

∂t
+

∂2A0

∂x2
− 2A0

∂An−1

∂x
+

∂nf

∂xn
+

n−1∑
l=1

Al

∂lf

∂xl
= 0 (7a)

i
∂Ak

∂t
+

∂2Ak

∂x2
+ 2

∂Ak−1

∂x
− 2Ak

∂An−1

∂x
+

(
n

k

)
∂n−kf

∂xn−k
+

n−k−1∑
l=1

Ak+�

(
� + k

k

)
∂�f

∂x�
= 0

k = 1, 2, . . . , n − 1. (7b)

This system of PDEs can conveniently be written in matrix Burgers form

i�t − 2�x� + �xx + �F − F � + Fx = 0 (8)

where � is the n × n matrix given by

� =




0 −1 0 · · · 0

0 0 −1 · · · ...

...
...

. . .
. . . 0

0 · · · · · · 0 −1
A0 A1 · · · An−2 An−1




(9)

and F is the n × n matrix whose entries are given by

Fi,j =




f i = j = 1(
i−1
j−1

)
∂i−j f

∂i−j x
i, j = 2, 3, . . . , n j � i

0 otherwise.

(10)

Following Levi et al [9], introduce the matrix Hopf–Cole transformation:

� = −∂�

∂x
�−1. (11)

Substituting (11) into equation (8) leads to the linear matrix Schrödinger equation

i
∂�

∂t
= −∂2�

∂x2
+ F� (12)
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from which we deduce that the entries φij of the matrix � satisfy the following:

i
∂φ1,�

∂t
+

∂2φ1,�

∂x2
= fφ1,� � = 1, 2, . . . , n (13a)

i
∂φk,�

∂t
+

∂2φk,�

∂x2
=

k∑
m=1

(
k − 1
m − 1

)
∂k−mf

∂xk−m
φm,� k, � = 2, 3, . . . , n. (13b)

Using (11) or more specifically

�� = −∂�

∂x
(11′)

with � as given in (9), leads to, on a component by component comparison of the entries of
the matrices in (11′),

φk+1,� = ∂φk,�

∂x
(14a)

n−1∑
k=1

Ak−1φk,� = −∂φn+1,�

∂x
. (14b)

If we denote φ1� = ω�, l = 1, 2, . . . , n, then from (13a) we deduce that ω� are solutions of
the Schrödinger equation (4). From (14a) we obtain

φk,� = ∂k−1ω�

∂xk−1
(15)

which in turn gives (13b) as

i
∂k−1

∂xk−1

(
∂ω�

∂t

)
+

∂k−1

∂xk−1

(
∂2 ω�

∂ x2

)
=

k∑
m=1

(
k − 1
m − 1

)
∂k−mf

∂xk−m

∂k−1ω�

∂xk−1
. (16)

This upon rearrangement leads to

i
∂k−1

∂xk−1

(
∂ω�

∂ t

)
+

∂k−1

∂xk−1

(
∂2 ω�

∂ x2

)
= ∂k−1 (f ω�)

∂xk−1
(17)

which is satisfied because ω� satisfies (4). Finally, from (14b), we obtain

∂nω�

∂xn
+

n−1∑
m=0

Am

∂mω�

∂xm
= 0. (18)

The system of equations (18) can be solved for the Am giving

Am = (−1)n−m W	
m

W
(19)

where

W	
m =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ω1 ω2 · · · ωn−1 ωn

∂xω1 ∂xω2 · · · ∂xωn−1 ∂xωn

...
...

. . .
...

...

∂m−1
x ω1 ∂m−1

x ω2 · · · ∂m−1
x ωn−1 ∂m−1

x ωn

∂m+1
x ω1 ∂m+1

x ω2 · · · ∂m+1
x ωn−1 ∂m+1

x ωn

...
...

. . .
...

...

∂n
x ω1 ∂n

x ω2 · · · ∂n
x ωn−1 ∂n

x ωn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(20)
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and

W =

∣∣∣∣∣∣∣∣
ω1 · · · ωn

...
. . .

...

∂n−1
x ω1 · · · ∂n−1

x ωn

∣∣∣∣∣∣∣∣
(21)

where, as usual, | | represents the determinant and for convenience, the notation ∂k
x ≡ ∂k

∂xk has
been used. Thus, it follows that if ϕ is a solution of Schrödinger’s equation (4) with potential
f (t, x), then

ψ = ∂nϕ

∂xn
+

n−1∑
k=0

(−1)n−k
W	

k

W

∂kϕ

∂xk
(22)

is a solution to Schrödinger’s equation (1) with potential f (t, x) + g(t, x), when g(t, x) is of
the form

g(t, x) = −2
W 	

n−1

W
= −2

∂2

∂x2
(ln W). (23)

A more compact form of the solution given in (22) is provided by

ψ = Wϕ

W
(24)

where Wϕ = det(wronskian(ω1, ω2, . . . , ωn, ϕ)) and where each of the ω� and ϕ are solutions
of (4). It should be noted that if ϕ is a linear combination of the ωi then the solution ψ is
trivial.

3. Iterated and nth-order equivalence

The previous section saw the construction of the solution

ψ = ∂nϕ

∂xn
+

n−1∑
k=0

(−1)n−k
W	

k

W

∂kϕ

∂xk
(22)

for Schrödinger’s equation with potential f (t, x) + g(t, x) where W	
k
,W and g(t, x) were

given in (20), (21) and (23) respectively, provided ϕ and ω� appearing in W and W	
k

all satisfy
Schrödinger’s equation with potential f (t, x).

We now focus our attention on the operator

∂n

∂xn
+

n−1∑
k=0

(−1)n−k
W	

k

W

∂k

∂xk
. (25)

The literature usually sees an nth-order Darboux transformation given as a composition of
n first-order Darboux transformations (see, e.g., [14]). In fact, the operator given in (25) is
factorable and can be given as

∂n

∂xn
+

n−1∑
k=0

(−1)n−k
W	

k

W

∂k

∂xk
=

n∏
�=1

(
∂

∂x
− 1

��

∂(��)

∂x

)
(26)

where W	
k

is given in (20),

�� = W�

W�−1
(27)
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and W� is given by

W� = det




ω1 ω2 · · · ω�

∂xω1 ∂xω2 · · · ∂xω�

...
...

. . .
...

∂�−1
x ω1 ∂�−1

x ω2 · · · ∂�−1
x ω�


 (28)

with W 0 = 1. By (24), �� = W�

W�−1 is a solution to the equation

i
∂ϕ

∂t
= −∂2ϕ

∂x2
+ (f (t, x) + g�−1(t, x))ϕ (29)

where g�−1 = ∂2 ln(W�−1)

∂2x
, and the operator

∂

∂x
− 1

��

∂(��)

∂x
(30)

transforms solutions of (29) into solutions of

i
∂ϕ

∂t
= −∂2ϕ

∂x2
+ (f (t, x) + g

�
(t, x))ϕ. (31)

Thus the right-hand side of (26) is the composition of transformations which take solutions of
i ∂ϕ

∂t
= − ∂2ϕ

∂x2 + f (t, x)ϕ to solutions of i ∂ϕ

∂t
= − ∂2ϕ

∂x2 + (f (t, x) + gn(t, x))ϕ by going through
solutions to the intermediate equations (29) and (31) for 1 � � � n. Factorizations of
ordinary differential operators with coefficients of one variable and a similar structure to (25)
have appeared in [4]; however, the coefficeints of the operator (25) are of two variables.

It is interesting to note that the factorization of the nth-order Darboux operator (25) given
in (26) is not unique. Simply reordering the solutions {ω1, . . . , ωn} and then applying the
same factorization technique results in a different factorization. In fact, for a generic nth-
order Darboux operator there is an (n − 1)!-dimensional set of distinct factorization. This
follows by induction on the order of the operator, that linear combinations of a solution is
again a solution, but that rescalling a solution ωk or a linear combination of solutions does not
change W�.

4. Conclusion

This paper constructs a link between Schrödinger equations with different nonzero potentials
using an nth-order Darboux transformation. A system of n nonlinear partial differential
equations is constructed for the coefficients of the Darboux transformation. Using a
matrix Hopf–Cole transformation, this system is solved. This improves and generalizes
the earlier work of Samsonov and Ovcharov [15] who required an assumption to show that the
composition of two first-order Darboux transformations for the time-dependent Schrödinger
equation was equivalent to a second-order Darboux transformation. They further conjectured
the equivalence of an nth-order Darboux transformation and a composition of n first-order
Darboux transformations. In this paper we have shown this conjecture to be true and give an
explicit (though nonunique) factorization.
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